326 research outputs found

    Self-assembly in dilute mixtures of non-ionic and anionic surfactants and rhamnolipid biosurfactant

    Get PDF
    The self-assembly of dilute aqueous solutions of a ternary surfactant mixture and rhamnolipid biosurfactant/surfactant mixtures has been studied by small angle neutron scattering. In the ternary surfactant mixture of octaethylene glycol monododecyl ether, C12E8, sodium dodecyl 6-benzene sulfonate, LAS, and sodium dioxyethylene monododecyl sulfate, SLES, small globular interacting micelles are observed over the entire composition and concentration range studied. The modelling of the scattering data strongly supports the assumption that the micelle compositions are close to the solution compositions. In the 5-component rhamnolipid/surfactant mixture of the mono-rhamnose, R1, di-rhamnose, R2, rhamnolipids with C12E8/LAS/SLES, globular micelles are observed over much of the concentration and composition range studied. However, for solutions relatively rich in rhamnolipid and LAS, lamellar/micellar coexistence is observed. The transition from globular to more planar structures arises from a synergistic packing in the 5 component mixture. It is not observed in the individual components nor in the ternary C12E8/LAS/SLES mixture at these relatively low concentrations. The results provide an insight into how synergistic packing effects can occur in the solution self-assembly of complex multi-component surfactant mixtures, and give rise to an unexpected evolution in the phase behaviour

    Management and outcomes of unilateral group d tumors in retinoblastoma

    Get PDF
    Purpose: Retinoblastoma presents most commonly as advanced unilateral disease, particularly in developing countries for which primary enucleation has been the preferred method of treatment. However, with the evolution of newer treatment modalities including intravitreal chemotherapy, intra-arterial chemotherapy and newer chemotherapeutic combinations, a trend towards more conservative approaches is being observed. Our aim is to evaluate outcomes of group D eyes following conservative and non-conservative treatment options. Patients and Methods: The ocular oncology database was used to identify eyes with unilateral retinoblastoma that fulfilled the International Intraocular Retinoblastoma Classification (IIRC) group D criteria from August 2010 to August 2018 and these were retrospectively reviewed. Overall, 39 eyes were identified. Results: Nineteen (49%) eyes underwent primary enucleation and 20 (51%) received eyeconserving treatment. Eye salvage was possible in 15 (75%) eyes in the attempted salvage group. None of the patient revealed signs of metastasis. All eyes received conventional chemotherapy (carboplatin, vincristine, etoposide) and focal laser therapy. Additional treatment modalities offered included intravitreal chemotherapy, intra-arterial chemotherapy and topotecan. Three (11%) eyes in the primary enucleation group showed high-risk features on histopathology and none developed metastasis. Conclusion: The results of the study seem promising and conservative measures can be adopted in selected unilateral group D eyes

    Inhibitory effects of lipopeptides and glycolipids on C. albicans - Staphylococcus spp. dual-species biofilms

    Get PDF
    Microbial biofilms strongly resist host immune responses and antimicrobial treatments and are frequently responsible for chronic infections in peri-implant tissues. Biosurfactants (BSs) have recently gained prominence as a new generation of anti-adhesive and antimicrobial agents with great biocompatibility and were recently suggested for coating implantable materials in order to improve their anti-biofilm properties. In this study, the anti-biofilm activity of lipopeptide AC7BS, rhamnolipid R89BS and sophorolipid SL18 was evaluated against clinically relevant fungal/bacterial dual-species biofilms (Candida albicans, Staphylococcus aureus, Staphylococcus epidermidis) through quantitative and qualitative in vitro tests. C. albicans - S. aureus and C. albicans - S. epidermidis cultures were able to produce a dense biofilm on the surface of the polystyrene plates and on medical-grade silicone discs. All tested BSs demonstrated an effective inhibitory activity against dual-species biofilms formation in terms of total biomass, cell metabolic activity, microstructural architecture and cell viability, up to 72h on both these surfaces. In co-incubation conditions, in which BSs were tested in free soluble form, rhamnolipid R89BS (0.05 mg/ml) was the most effective among the tested biosurfactants against the formation of both dual-species biofilms, reducing on average 94% and 95% of biofilm biomass and metabolic activity at 72h of incubation, respectively. Similarly, rhamnolipid R89BS silicone surface coating proved to be the most effective in inhibiting the formation of both dual-species biofilms, with average reductions of 93% and 90%, respectively. Scanning Electron Microscopy observations showed areas of treated surfaces that were free of microbial cells or in which thinner and less structured biofilms were present, compared to controls. The obtained results endorse the idea that coating of implant surfaces with BSs may be a promising strategy for the prevention of C. albicans -Staphylococcus spp. colonization on medical devices, and can potentially contribute to the reduction of the high economic efforts undertaken by healthcare systems for the treatment of these complex fungal-bacterial infections

    The performance of surfactant mixtures at low temperatures

    Get PDF
    Optimising detergency at lower temperatures is of increasing interest due to environmental and economic factors, and requires a greater understanding of the effects of temperature on the adsorption of surfactant mixtures at interfaces. The adsorption properties of surfactant mixtures and biosurfactant/surfactant mixtures have been studied at room temperatures and at temperatures below ambient using surface tension and neutron reflectivity measurements. For the ternary surfactant mixture of octaethylene monododecyl ether, C12E8, sodium dodecyl 6-benzene sulfonate, LAS, and sodium dioxyethylene glycol monododecyl sulfate, SLES, the surface tension at the air-water interface increases with decreasing temperature. In contrast, there is a notable reduction in the increase in the surface tension with a decrease in temperature from 25 °C to 10 °C for the 5 component rhamnolipid/surfactant mixture of the mono-rhamnose, R1, and di-rhamnose, R2, with C12E8/LAS/SLES. The associated neutron reflectivity data for the ternary C12E8/LAS/SLES mixture and the significant observation is that the 3, 4, and 5-component mixtures containing rhamnolipids in conjunction with the other surfactants show changes in composition and adsorbed amounts of the individual components which are close to the experimental error. However the significant observation is that the neutron reflectivity data indicate that the improved surface tension tolerance at lower temperatures is associated with the dominance of the rhamnolipid adsorption in such mixtures. Hence the introduction of the rhamnolipids provides a tolerance to the adverse effects associated with reduced temperatures, and a potential for improved detergency at relatively low temperatures

    Biomedical and therapeutic applications of biosurfactants

    Get PDF
    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases and as therapeutic agents due to their antibacterial, antifungal and antiviral activities. Furthermore, their role as anti-adhesive agents against several pathogens illustrate their utility as suitable anti-adhesive coating agents for medical insertional materials leading to a reduction of a large number of hospital infections without the use of synthetic drugs and chemicals. Biomedical and therapeutic perspectives of biosurfactants applications are presented and discussed in this chapter

    A kinetic and thermodynamic investigation into the removal of methyl orange from wastewater utilizing fly ash in different process configurations

    Get PDF
    The removal of methyl orange using coal fly ash, which is a widely available low-cost adsorbent, has been investigated. Adsorption studies for dye removal were conducted using various configurations such as batch, column and heap adsorption at various temperatures and adsorbent dosages at neutral pH. The Langmuir, Freundlich and Tempkin isotherm models were used to describe the process. The Freundlich model best represented the adsorption. Kinetic studies show the adsorption followed pseudo-second-order kinetics. Thermodynamic studies show that the process is spontaneous, endothermic and random. Column configuration was found to be the most efficient with a dye removal percentage of 99.95%, followed by heap adsorption at 99.25% removal and lastly batch configuration with 96.68% removal. Economic analysis shows that column operation would be the most effective for practical implementation
    corecore